Cleaning Up a Vibe-Coded Al App and Shipping It to
Production

When Al Writes Code, It Optimizes for “Works,” Not “ Safe”

One of the first things | noticed was how easy it was to introduce security vulnerabilities when using
tools like Supabase in combination with Al-generated code.

Company joins by code — and why that's dangerous

To allow users to join a company, the app used a “company code” flow. Reasonable idea. The
implementation, however, exposed a critical flaw.

The Al had generated logic that allowed any authenticated user to query companies by their join
code in order to validate it. From the Ul, this seemed harmless. But from the browser’s dev tools, it
was trivial to call the underlying Supabase function directly and enumerate companies or retrieve
sensitive metadata.

There was no meaningful boundary between:

« “the Ul is allowed to do this”
« and “the backend must enforce this.”

The Al assumed the frontend was the gate. Attackers don’t respect that assumption.

Usage limits that existed only in the Ul
The same pattern appeared with usage limits.

The Ul respected limits. Buttons disabled correctly. Warnings showed up at the right time. But the
Supabase functions themselves had no enforcement.

Anyone with basic knowledge of dev tools could bypass limits entirely by calling the functions
directly. From the system’s perspective, nothing was wrong—the requests were valid.

This is a recurring theme with Al-generated systems: policies exist conceptually, but not
structurally.

Velocity Without Foundations Is an lllusion
Another challenge wasn’t technical—it was organizational.

The product owner had built much of the app through “vibe coding”: iterating quickly, prioritizing
visible progress, and reacting to stakeholder feedback in real time. That approach can be useful
early on, but it creates blind spots.

While | was setting up:

e proper environment separation
« a branching strategy
« end-to-end tests



« and a staging pipeline that actually mirrored production

| kept hearing variations of:

What often goes unspoken is the assumption embedded in that question: that infrastructure work is
optional, or secondary.

But stakeholders don’t just care about Ul polish. They care about:
« not breaking production

« predictable releases
« confidence that changes won't introduce silent regressions

A staging environment with real tests isn’t overhead. It's the minimum cost of operating software
responsibly.

Fix the Layout Before Adding More Features

Another lesson became clear early: the Ul layout itself needed to change before new features were
added.

When features are layered onto a layout that hasn't stabilized, every new addition increases
cognitive and technical debt. Components become overloaded. State management becomes fragile.
Small Ul changes ripple unpredictably.

Cleaning this up early reduced the cost of every future change. It's the kind of decision that looks
slow in the moment and fast in hindsight.

Re-thinking the Backend

Part of the cleanup involved reevaluating the backend entirely.

The original implementation leaned heavily on auto-generated logic and client-side orchestration. It
worked—nbut it was difficult to reason about, test, and secure.

Moving critical paths to a Go backend gave us:
explicit boundaries
clearer ownership of business logic

predictable performance
and the ability to write tests that actually meant something

This wasn’t about language preference. It was about control.
Al is excellent at scaffolding. Production systems still need intentional architecture.
Taking the Feature to Production

Once the foundations were in place, one of the previously “working” features could finally be
shipped properly.



Not rewritten from scratch. Not replaced. Just corrected, hardened, and made real.
The result looked boring from the outside. That's a compliment.

It behaved correctly under edge cases. It enforced rules at the backend. It survived being poked at
from dev tools. It could be deployed with confidence.

That’s what production readiness actually feels like.

What This Experience Reinforced

Al has changed how quickly software can be assembled—nbut it hasn’t changed what makes
software good.

The hard parts are still the same:

defining boundaries
enforcing invariants
designing for failure
and building systems that hold up when nobody is watching

Al can get you to “it works” faster than ever. Engineers are still needed to get you from “it works” to
“we can ship this.”

That gap is where real engineering lives.



